Titles:
NEGATIVE ELECTRODE AND METHOD FOR PRODUCING NEGATIVE ELECTRODE
負極及び負極の製造方法
Abstracts:
The present invention provides a negative electrode which comprises a negative electrode collector that has a roughened surface and a negative electrode active material layer that is arranged on the negative electrode collector. This negative electrode is characterized in that: the negative electrode active material layer contains negative electrode active material particles that comprise a compound of lithium, silicon and oxygen; the O/Si ratio of the oxygen to the silicon in the negative electrode active material particles is within the range from 0.8 to 1.2; the negative electrode active material layer has a multilayer structure that is composed of two or more layers; and each layer in the multilayer structure of the negative electrode active material layer has a layer, which contains a tetravalent silicon compound that contains at least one of lithium and oxygen, in the upper part. Consequently, the present invention is able to provide: a negative electrode which enables a great increase in the capacity, while maintaining excellent battery characteristics; and a method for producing a negative electrode, the method being capable of producing this negative electrode.
Titles:
COMPOSITE NANOPARTICLES COMPRISING NON-CARBON-BASED NANOPARTICLES AND CARBONIZATION LAYER, LITHIUM SECONDARY BATTERY ANODE COMPRISING SAME, AND PREPARATION METHOD THEREFOR
비탄소계 나노입자 및 탄화층을 포함하는 복합 나노입자, 이를 포함하는 리튬 이차전지용 음극, 및 이의 제조방법
Abstracts:
The present invention relates to composite nanoparticles comprising non-carbon-based nanoparticles and a carbonization layer, a lithium secondary battery anode comprising same, and a preparation method therefor, and, more specifically, according to the preparation method of the present invention, an acrylonitrile-based polymer layer, in which cross-linkable molecules are copolymerized, is applied to the surface of a non-carbon-based nanoparticle core layer such as silicon by an emulsion drying method and the like, a cross-linked acrylonitrile-based polymer layer is formed therefrom through heat treatment, and then a composite nanoparticle material comprising non-carbon-based nanoparticles and a carbonization layer, which has a high residual carbon ratio, can be prepared therefrom through heat treatment at a high temperature. A uniform carbon layer on the surface of the non-carbon-based nanoparticles inhibits a side reaction with an electrolyte, and thus, when the present invention is used as an anode active material, long-term stability of a battery can be maximized.
본 발명은 비탄소계 나노입자 및 탄화층을 포함하는 복합 나노입자, 이를 포함하는 리튬 이차전지용 음극 및 이의 제조방법에 대한 것으로, 보다 상세하게는 본 발명의 제조방법에 따르면 실리콘과 같은 비탄소계 나노입자 코어층 표면에 에멀전 건조방법 등을 통해 가교 분자가 공중합된 아크릴로니트릴계 고분자층을 코팅하고, 이를 열처리를 통하여 가교형 아크릴로니트릴계 고분자층을 형성시킨 후, 이를 다시 고온에서 열처리를 하여 탄소 잔존율이 높은 비탄소계 나노입자 및 탄화층을 포함하는 복합 나노입자 소재를 제조할 수 있다. 비탄소계 나노입자의 표면에 균일한 탄소층은 전해질과의 부반응을 억제하여 음극 활물질로 사용 시 전지의 장기 안정성을 극대화시킬 수 있다.
Applicant:
NEO BATTERY MAT LTD [CA] (네오 배터리 머티리얼즈 엘티디)
Titles:
ELECTRODE, RECHARGEABLE BATTERY, AND MANUFACTURING PROCESSES
ELEKTRODE, AKKUMULATOR SOWIE HERSTELLUNGSVERFAHREN
Abstracts:
The invention relates to an electrode (10), a rechargeable battery (100) and corresponding manufacturing processes. According to the invention, a silicon substrate (2) having a length (1) of 156 mm or more is provided, and a porous silicon layer (20) is formed on a bottom face (5) of the silicon substrate (2). In addition, a metal layer (30) is applied to the entire surface of the porous silicon layer (20). And finally, the porous silicon layer (20) with the metal layer (30) thereon is cut off a non-porous portion (40) of the silicon substrate (2).
Die vorliegende Erfindung betrifft eine Elektrode (10), einen Akkumulator (100) sowie entsprechende Herstellungsverfahren. Dabei wird ein Siliziumsubstrat (2) mit einer Länge (1) von 156 mm oder mehr bereitgestellt und eine poröse Siliziumschicht (20) an einer Substratunterseite (5) des Siliziumsubstrats (2) ausgebildet. Zudem wird eine Metallschicht (30) flächig auf die poröse Siliziumschicht (20) aufgebracht. Schließlich wird die poröse Siliziumschicht (20) mit der darauf angeordneten Metallschicht (30) von einem nicht porosifizierten Teil (40) des Siliziumsubstrats (2) abgetrennt.
Applicant:
RENA TECH GMBH [DE]
Inventor:
STRAUB BENEDIKT [DE]
The full version contains content that elaborates on key inventions, and lists additional patents (Excel version available).
Please sign up below to check it out.
Upon registration, your organization receives for free (according to your choice):